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Abstract

In this paper, based on the concept of Havrda-Charvat-Tsallis entropy, fuzzy entropy

measure is introduced in the setting of fuzzy set theory. The properties of the new fuzzy

measure are investigated in a mathematical view point. Several examples are applied to

illustrate the performance of the proposed fuzzy measure. Comparison with several existing

entropies indicates that the proposed fuzzy information measure has a greater ability in

discrimaniting different fuzzy sets. Lastly, the proposed fuzzy information measure is applied

to the problem of MCDM (multi criteria decision making) based on TOPSIS (Technique for

Order Preference by Similarity to Ideal Solution) method under bipolar fuzzy environment.

Two models are constructed to obtain the attribute weights in the cases that the information

attribute weights is partially known and completely unknown. An example is employed to

show the effectiveness of the new MCDM method.

Keywords: Renyi entropy, Shannon entropy, Tsallis entropy, fuzzy set, bi-polar fuzzy

sets, TOPSIS.

1. Introduction

The concept of the fuzzy set developed by Zadeh [35] to model and process uncertain

information in a much better way. By assigning the membership degree between 0 and

1 to elements with respect to a set, the fuzzy set can describe the state between “belong

to” and “not belong to”. Therefore, many kinds of uncertainty that cannot be depicted

by classical sets can be well-described by fuzzy sets. Since its inception, fuzzy set theory

has been applied in many areas such as automatic control, pattern recognition, decision-

making etc. The entropy of a fuzzy set was first proposed by Zadeh [36] to depict the

fuzziness. Following, Zadeh’s work, De Luca and Termini [7] proposed a probabilistic

entropy measure for FSs (fuzzy sets). Yager [34] proposed an entropy measure of a fuzzy

set regarding an absence of qualification between fuzzy set and its complement. They

also put forward some axiomatic properties for the fuzzy entropy measure, according

to which fuzzy entropy can be defined. Yager’s concept was extended by Higashi and
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klir [12] to a more general kind of fuzzy complementation. Because of its improtance in

depicting a fuzzy set, the entropy measure of fuzzy sets has been developing to an active

topic in fuzzy set theory. In the fuzzy environment, many entropy measure had been

defined by various authors (see Bhandari and Pal [5], Hooda [9], Hwang and yung [11],

Joshi and Kumar [14], Joshi and Kumar [16], Kosko [19], Joshi and Kumar [20], Li and

Lu [21], Pal and Pal [24], Pal and Pal [25], Verma and Sharma [30]).

One parametric generalization of entropy function (see Shannon [27]) by Renyi [26]

has achieved the attention of researchers worldwide. With the rapid advancement, the

role of parameters in an information measure came into the notice of authors. The

presence of parameters play an important role in an information measure as they make

it more flexible from application point of view and enhances its scope of application.

For instance, in a problem based on environmental issues, the different parameters may

characterize the different environmental factors like as temperature, time constraint and

pressure etc. More the number of parameters an information measure contains, more

will be its utility in various applications. Therefore, there is a need to develop more and

more effective measures to cover simple as well as complicated situations. This work is

a sincere effort in this direction. In this paper, a new one parametric generalization of

Shannon entropy for FSs is proposed. The proposed measure is an extension of Havrda-

Charvat-Tsallis entropy which is neither additive nor non-additive entropy measure from

probabilistic settings to fuzzy set theory. The generalized entropy theory has its own

advantages. When the parameters change, the entropy value changes. Also, when the

parameters change, the entropy becomes another entropy. The parameters have practi-

cally significance for entropy. In this manner how the parameters influence /affect the

entropy is an interesting topic to study. Some researchers studied the generalized entropy

(see Bhandari and Pal [5], Kumar et al. [14], Joshi and Kumar [16], Joshi and Kumar

[17], Kumar and Kumar [20], Mishra and Rani [23], Xiong et al. [33]).

Bipolar fuzzy set (BFS) theory formalizes a unified approach to fuzziness and po-

larity. It also includes a basis for multiagent decision analysis and bipolar cognitive

modeling and captures double sided ( positive and negative or effect and side effect)

nature of cognition and human perception. For example, when we want to express effect

and side eftect of a drug, we can use bipolar fuzzy valuations. Because side effect is a

negative effect. In fuzzy set, we can not model negative effect because it has only mem-

bership degree of an element. So, bipolar fuzzy and fuzzy theory is different in terms of

modeling of problems.

Decision making means that the best alternaive is selected from a finite set of feasible

alternatives according to the multiple criteria. Decision making theory is an important

branch, which is mostly in human activities. Because decision making problem are fre-

quentely produced from a complicated environment, evalutaed information is usely fuzzy.

In general, the fuzzy information takes two forms that is qualitative and quantity. The

quantity fuzzy information can be expressed by fuzzy sets. Fuzzy set theory proposed by

Zadeh [35] has been describe fuzzy quantity information which contains only a member-

ship degree. Due to its successful application and some short comings, many researchers

introduce the extended form of fuzzy set.
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TOPSIS is the most implemented technique for decision-making problems which

was introduced by Hwang and Yoon [10] especially in economics, medical sciences, social

sciences, enginerring etc. The fusion between MCDM and FS theory has led to new de-

cision theory, named as fuzzy multi-criteria decision making (FMCDM), where we have

decision-maker models that can deal with uncertain knowledge and information. The

most important thing is that, when we want to assess, judge or decide, we usually a

natural language in which the words don’t have a clear, definite meaning. As a result,

we need fuzzy number to represent linguistic variables, to express the subjective judge-

ment of a decision maker in a quantitive manner. As a generalization of the concept

of the classical set, fuzzy set, intuitionistic fuzzy sets etc., Zhang [37] firstly extended

the concept of bipolar fuzzy sets as an extension of FSs whose membership degree range

is [−1, 1]. In the case of BFSs, every element having two membership values. One lies

in the interval [0, 1] and other lies in the interval [−1, 0]. Actually, a wide variety of

human decision making is based on double-sided or bipolar judgmental thinking on a

positive side and a negative side. For instance, common interests and conflict of inter-

ests, feedback and feedforward, hostility and friendship, effect and side effect, likelihood

and unlikelihood and so forth are often the two sides in coordination and decision. Sim-

ilarly, in the traditional Chinese medicine (TCM ), “yang” and “yin” are the two sides.

Yang is the positive and masculine side of a system and yin is the negative and feimine

side of a system. The coexistence, equilibrium, and harmony of the two sides are con-

sidered a key for the mental and physical health of a person as well as for the stability

and prosperity of a social system. Thus, BFSs indeed have potential impacts on many

fields, including economics, artificial intelligence, computer science, information science,

cognitive science, management science, decision science, medical science, social science

and quantum computing. In recent years bipolar fuzzy sets seem to have been studied

and applied a bit enthusiastically and increasingly. From the above discussion, the im-

portance of FSs and TOPSIS method can be easily judged. However, a lot of research

has been done on solving MCDM problems using fuzzy sets and intuitionistic fuzzy sets,

but a very little research has been done on solving MCDM problems where ratings of

alternatives are expressed by using bipolar FSs. This study is a sequel in this direction.

The prime aims of introducing this study are: (1) To introduce a parametric fuzzy infor-

mation measure based on the Havrda-Charvat-Tsallis entropy. (2) The justification of a

flexible parameter is also given in the form of a senstitive analysis. (3) To introduce a

new MCDM method based on the proposed measure and bipolar fuzzy TOPSIS method.

To do so, the present study is managed as follows.

The remaining of the paper is structured as follows. Section 2 recalls some basic

concepts and definitions related to FSs. In Section 3, we proposed a new fuzzy infor-

mation measure and prove some basic properties. Section 4 presented the comparative

study of the proposed measure with some existing fuzzy entropy measures. In Section 5,

we extended the application of extended TOPSIS method with the help of examples in

bipolar fuzzy environment. At last, the paper is concluded with “Conclusions” in Section

6.
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2. Basic Concepts and Definitions

The following notioins are used in this section. X = {q1, q2, . . . , qk} be a fixed set;

FSs(X) is the class of all fuzzy sets of X.

Definition 2.1. A fuzzy set M on X is described as :

M =
{(

q, µM (q)
)

| q ∈ X
}

, (2.1)

in which µM : X → [0, 1] is a membership function of M in FSs.

Definition 2.2. A fuzzy set M̃ is said to be crisper than M if

µM̃ (q) ≤ µM (q), when µM (q) ≤ 0.5;

and

µM̃ (q) ≥ µM (q), when µM (q) ≥ 0.5.

Definition 2.3. Let M,N ∈ FSs(X) be such that

(a) M = {(q, 1 − µM(q)) | q ∈ X}. (Complement)

(b) M ∪N = {(q, sup(µM (q)), µN (q)) | q ∈ X}. (Union)
(c) M ∩N = {(q, inf(µM (q)), µN (q)) | q ∈ X}. (Intersection)

First time to measure the uncertainty degree associated with a fuzzy set was made

by Zadeh [35], who defined the (weighted) entropy of a fuzzy set M with respect to set

X in a much better way as:

H(M) = −
k

∑

i=1

µM (qi)(qi) log(qi), qi ∈ X. (2.2)

De Luca and Termini [7] first gave the following axioms for entropy of FSs as :

A1 (Sharpness): H(M) is minimum if and only if M is crisp set .

A2 (Maximality): H(M) is maximum if and only if M is the most fuzzy set.

A3 (Resolution): H(M) ≥ H(M∗), if M∗ is crisper than M .

A4 (Symmetry): H(M) ≥ H(M ) where M is the complement set of M ,

i.e., µM (qi) = 1− µM (qi).

Throughout this paper, it is assumed that k ∈ I+ (set of positive integers) and all

logarithms are to base D = 2.

Corresponding to Shannon entropy, De Luca and Termini [7] defined a fuzzy entropy

for a fuzzy set M as :

H(M) = −1

k

k
∑

i=1

[µM (qi) log(µM (qi)) + (1− µM (qi)) log(1− µM (qi))]. (2.3)
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Later on Bhandari and Pal [5] suggested some new measures of fuzzy entropy. Corre-

sponding to Renyi entropy [26] they defined :

Hα(M) =
1

1− α

k
∑

i=1

log[µM (qi)
α +

(

1− µM(qi)
)α

], (2.4)

where α > 0(6= 1).

A parametric fuzzy entropy can not be suitable for different situtaions of same nature.

So, there is always a scope for the development of a new fuzzy entropy. In this paper, we

proposed a new entropy of fuzzy sets. A comparison is made with some existing entropies

to show the effectiveness of the proposed one.

3. A New Fuzzy Information Measure

For this section, we briefly review the theoritical concept of information theory and

then introduce the Havrda-Charvat-Tsallis entropy, along with studing with their prop-

erties. Let Γk = {S = (s1, s2, . . . , sk) : si ≥ 0;
∑k

i=1 si = 1}, k ≥ 2 be set of k-complete

probability distributions. For any probability distributions S = (s1, s2, . . . , sk) ∈ Γk,

Shannon [27] defined an entropy as:

HShannon(S) = −
k

∑

i=1

(si) log(si). (3.1)

Tsallis [29] introduced a generalized form of Shannon entropy, Tsallis entropy is defined

by

Hα
Tsallis(S) =

1

α− 1

[

1−
k

∑

i=1

sαi

]

;α ∈ (0, 1) ∪ (1,∞). (3.2)

Since, limα→1H
α
Tsallis(S) = HShannon(S).

In particular, Tsallis [29] and Renyi entropy [26] having a close relationship between

them as follows:

Hα
Renyi(S) =

1

α− 1
logD

(

1− (1− α)Hα(S)
)

=
1

α− 1
logD

k
∑

i=1

sαi , (3.3)

where Hα
Renyi(S) is the Renyi entropy.

However, a major difference existes, the Renyi [26] and Shannon [27] entropy are

additive whereas the Tsallis entropy [29] is non-additive.

i.e., Hα
Tsallis(S, T ) = Hα

Tsallis(S) +Hα
Tsallis(T ) + (1− α)Hα

Tsallis(S)H
α
Tsallis(T ), (3.4)

where S, T ∈ Γk.
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Remark.

1. If α = 2, (3.2) recovers Ginni-Simpson’s index :

i.e., Hα=2
Tsallis(S) =

[

1−
k

∑

i=1

s2i

]

. (3.5)

2. If α = 2, (3.3) recovers Renyi Index :

i.e., Hα=2
Renyi(S) = logD

[

k
∑

i=1

s2i

]−1
. (3.6)

However, in the literature of information theory, there exists various generalizations of

Shannon’s entropy [27], we introduced a new information measure Hnew
α : Γk → R

+ (set

of positive real numbers); k ≥ 2 as follows:

Hnew
α (S) =

1

α− α−1

k
∑

i=1

(sα
−1

i − sαi ); α ∈ (0, 1) ∪ (1,∞). (3.7)

Particular cases:

1. Hnew
α (S) = Hnew

α−1
(S).

2. If α → 1, (3.7) recovers the Shannon [27] entropy.

3. If s1 = s2 = · · · = sk = 1
k
, Hnew

α (S) = 1
α−α−1 [k

1−α−1 − k1−α] is an upper bound for

Hnew
α (S).

4. If α = 2, (3.7) becomes

Hnew
α=2(S) =

2

3

[ k
∑

i=1

(
√
si − s2i

]

,

which is an interesting entropy for probability distribution S = (s1, s2, . . . , sk).

3.1. Relation between proposed entropy and existing entropies:

1. Setting α−1 = β, (3.7) becomes Sharma and Taneja [28] entropy.

i.e., Hnew
(α,α−1=β)(S) =

1

α− β

[ k
∑

i=1

(sβi − sαi )

]

.

2. Hnew
α (S) =

1

α− α−1

[

exp
(

(1 − α−1)Hα−1

Renyi(S)
)

− exp
(

(1 − α)Hα
Renyi(S)

)]

, where

Hα−1

Renyi(S) =
1

1− α−1
log

∑k
i=1 s

α−1

i which is a close relation between Renyi [26] and

proposed entropy.
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3. Hnew
α (S) =

1

α− α−1

[

1 − (α−1 − 1)Hα−1

Tsallis(S) −
[

1 − (α − 1)Hα
Tsallis(S)

]

]

, where

Hα−1

Tsallis(S) =
1

α−1 − 1

[

1 − ∑k
i=1 s

α−1

i

]

which is a relation between Tsallis [29] and

proposed entropy.

4. Hnew
α (S) =

1

α− α−1

[

1−(21−α−1−1)Hα−1

H-Ch

]

−
[

1−(21−α−1)Hα
H-Ch

]

, whereHα−1

H-Ch(S)

=
1

21−α−1 − 1

[

1 −∑k
i=1 s

α−1

i

]

which is a relation between Havrda and Charvat [8],

Darocozy [1] and proposed entropy.

5. Hnew
α (S) =

1

α− α−1

[

(

1 − α−1

α−1 − 1
Hα−1

α-norm(S)
)α−1

−
(

1 − α

α− 1
Hα

α-norm(S)
)α

]

,

where Hα−1-norm(S) =
α−1

α−1 − 1

[

1−
(

1−∑n
i=1 s

α−1

i

)α]

and Hα-norm(S) =
α

α− 1

[

1−
(

∑n
i=1 s

α
i

)α−1]

which is an entropy studied by Arimoto [2] and Boekee- Lubbe [4].

Therefore, it becomes a close relationship between proposed entropy and Arimoto

[2], Boekee-Lubee [4] entropy.

For some S ∈ Γk we state the above entropy (3.7), as given below :

Hnew
α (S) =

1

21−α−1 − 21−α

[ k
∑

i=1

(sα
−1

i − sαi )

]

; α ∈ (0, 1) ∪ (1,∞). (3.8)

(3.7) and (3.8) are called a joint representatition of Havrda-Charvat-Tsallis entropy and
essentially have the same expression except the normalized factor. The entropy (3.8) is

normalized to one. That is, if S =
(1

2
,
1

2

)

, the entropy (3.8) is one, whereas the entropy

(3.7) is not normalized.

3.2. Properties of parametric entropy

Theorem 3.1. The parametric entropy Hnew
α (S), S ∈ Γk has the following properties:

1. Symmetry : Hnew
α (s1, s2, . . . , sk) is a symmetric function of (s1, s2, . . . , sk).

2. Non-Negative : Hnew
α (S) ≥ 0 for all α > 0(6= 1).

3. Expansible : Hnew
α (s1, s2, . . . , sk, 0) = Hnew

α (s1, s2, . . . , sk).

4. Decisive : Hnew
α (0, 1) = 0 = Hnew

α (1, 0).

5. Maximility :

Hnew
α (s1, s2, . . . , sk) ≤ Hnew

α (
1

k
,
1

k
, . . . ,

1

k
) =

1

α− α−1

[

k1−α−1 − k1−α
]

.

6. Concavity :

Hnew
α (tS1 + (1− t)S2) ≥ tHnew

α (S1) + (1− t)Hnew
α (S2).
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7. Continuity : Hnew
α (s1, s2, . . . , sk, 0) is continuous in the region si ≥ 0 for all i =

1, 2, . . . , k and α > 0.

Proof. Proof of the above theorm are trivial and omitted.

3.3. Definition

Corresponding to (3.7), we proposed the following fuzzy information measure:

Hnew
α (M) =

1

k(α−α−1)

k
∑

i=1

[

(

µM (qi)
)α−1

+
(

1−µM (qi)
)α−1

−
(

µM (qi)
)α

+
(

1−µM (qi)
)α

]

.

(3.9)

Remark. If α → 1, (3.9) recovers the fuzzy measure (2.3).

Next theorem gives the validity of the proposed measure (3.9).

Theorem 3.2. The measure (3.9) is a valid fuzzy measure.

Proof. For validity the measure defined by (3.9), we should fulfill the axiomatic require-

ments (A1)−(A4).

A1 (Sharpness): From (3.7), we have

Hnew
α (M) =

1

k(α−α−1)

k
∑

i=1

µM (qi)
α−1

+
(

1−µM (qi)
)α−1

−
(

(

µM (qi)
)α

+
(

1−µM (qi)
)α

)

.

(3.10)

If Hnew
α (M) = 0 in (3.7), then

µM (qi)
α−1

+
(

1−µM (qi)
)α−1

−
(

(

µM (qi)
)α

+
(

1−µM (qi)
)α

)

, for all i = 1, 2, . . . , k.

(3.11)

Since α > 0, (3.11) is satisfied only if µM (qi) = 0 or 1, for all i = 1, 2, . . . , k. Conversely,

let M be a non fuzzy set, i.e., crisp set, then either µM(qi) = 0 or 1. This implies that

µM (qi)
α−1

+
(

1−µM (qi)
)α−1

−
(

(

µM (qi)
)α

+
(

1−µM (qi)
)α

)

, for all i=1, 2, . . . , k. (3.12)

and α > 0.

Hence, Hnew
α (M) = 0 iff M is a crisp set, i.e., µM (qi) = 0 or 1 for all i = 1, 2, . . . , k

A2 (Maximality): Differentiating (3.7) with respect to µM(qi), we get

∂Hnew
α (M)

∂µM (qi)
=

1

k(α− α−1)

[

1

α

{

µM (qi)
1−α
α −

(

1− µM (qi)
)

1−α
α

}

]

−
[

α
{

µM (qi)
α−1−

(

1− µM (qi)
)α

}]

. (3.13)
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Differentiating (3.13) with respect to µM (qi) again, we get,

∂2Hnew
α (M)

∂µM (qi)2
=

α

k(α2 − 1)

[

( 1

α2
− 1

α

)

(

µM (qi)
1

α
−2 +

(

(

1− µM (qi)
)

1

α
−2

)

)]

−
[

(α2 − α)
(

µM (qi)
α−2+

(

1− µM (qi)
α−2

)

)]

. (3.14)

Case (i). When α < 1.

Let

A1 =
( 1

α2
− 1

α

)

µM (qi)
1

α
−2 +

(

1− µM (qi)
)

1

α
−2

,

A2 =(α2 − α)µM (qi)
α−2 +

(

1− µM (qi)
)α−2

,

Now A1 < 0, A2 > 0 and |A1| ≤ |A2| for α < 1, and A1 > 0, A2 < 0 and |A2| < |A1| for
0 < α < 1. Also

1

α
> 1,

α2 − 1

α
< 0 for α < 1. This implies that

∂2Hnew
α (M)

∂µM (qi)2
< 0.

Case(ii).

Similarly, we can prove
∂2Hnew

α (M)

∂µM (qi)2
< 0 for α > 1. It is evident that

∂Hnew
α (M)

∂µM (qi)
= 0, when µA(qi) = 0.5.

This shows that Hnew
α (M) is a concave function and has a global maximum at µa(qi) =

0.5. It proves that Hnew
α (M) is maximum if and only if M is the most fuzzy set, i.e.,

µM (q) = 0.5 for all q.

A3 (Resolution): In (3.13), for all α > 1

∂Hnew
α (M)

∂µM (qi)
> 0, in [0, 0.5)

and for α < 1

,

∂Hnew
α (M)

∂µM (qi)
< 0, in (0.5, 1]

and
∂Hnew

α (M)

∂µM (qi)
= 0 at µM (qi) = .5.

Therefore, Hnew
α (M) is an increasing function of µM(qi) in [0, 0.5) and decreasing function

of µM (qi) in (0.5, 1].

Now, let M∗ be crisper than M . This implies

0 ≤ µM∗(qi) ≤ µM (qi) < 0.5 ⇒ Hnew
α (M∗) ≤ Hnew

α (M) (3.15)
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and

0.5 < µM (qi) ≤ µM∗(qi) ≤ 1 ⇒ Hnew
α (M∗) ≤ Hnew

α (M). (3.16)

From (3.15) and (3.16), we get Hnew
α (M∗) ≤ Hnew

α (M) where M∗ is crisper than M .

A4 (Symmetry): This is straightforward by the definition of Hnew
α (M) and µM (qi) =

1− µM (qi). Hence, H
new
α (M) satisfies all properties in the axiomatic definition of fuzzy

measure. Therefore, Hnew
α (M) is a fuzzy measure of FSs.

Theorem 3.3. For M,N ∈ FSs(X), Hnew
α (M ∪ N) + Hnew

α (M ∩ N) = Hnew
α (M) +

Hnew
α (N).

Proof. Let

X1 = {q ∈ X | µM(q) ≥ µN (q)}, (3.17)

and

X2 = {q ∈ X | µM(q) < µN (q)}. (3.18)

where µM (q) and µN (q) are the membership functions of M and N , respectively.

If q ∈ X1, then µM∪N = max{µM (q), µN (q)} = µM (q)

and µM∩N = min{µM (q), µN (q)} = µN (q).

If q ∈ X2, then µM∪N = max{µM (q), µN (q)} = µN (q)

and µM∩N = min{µM (q), µN (q)} = µM (q).

Now, consider

Hnew
α (M ∪N) +Hnew

α (M ∩N)

=
1

k(α− α−1)

[ k
∑

i=1

{

(

µM (qi)
)α−1

+
(

1− µM (qi)
)α−1

−
(

µM (qi)
)α

+
(

1− µM(qi)
)α

}

]

+
k

∑

i=1

[

{

(

µN (qi)
)α−1

+
(

1− µN (qi)
)α−1

−
(

µN (qi)
)α

+
(

1− µN (qi)
)α

}

]

.

On simplifying, we get

Hnew
α (M ∪N) +Hnew

α (M ∩N) = Hnew
α (M) +Hnew

α (N).

4. Numerical Examples

In this section, the performance of proposed fuzzy measure Hnew
α (M) will be vali-

dated based on the following examples. To illustrate the effectiveness and performance

of the proposed measure for FSs, some existing fuzzy measures will be adopted for

comparison. Therefore, we first recall some widely used fuzzy measures for FSs.
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The fuzzy measure proposed by Yager [34] is shown below:

HY1
(M) = 1− dp(M,M c)

n
1

p

.

The fuzzy measure proposed by Kosko [19] is shown below:

Hk(M) = 1− dp(M,Mnear)

dp(M,Mfar)
.

The fuzzy measure proposed by Pal and Pal [25] is shown below:

HPal(M) =
1

k

k
∑

i=1

[

µM (qi)e
1−µM (qi) +

(

1− µM(qi)
)

eµM (qi)
]

.

The fuzzy measure proposed by Li and Liu [21] is shown below:

HLL(M) =
k

∑

i=1

S
(

cr(ξp = qi)
)

.

The fuzzy measure proposed by Hwang and Yung [11] is shown below:

HHY(M) =
1

1− e
−1

2

k
∑

i=1

[

(

1− e−µMc (qi)
)

I[µM (qi)≥
1

2
] +

(

1− e−µM (qi)
)

I[µM (qi)<
1

2
]

]

.

The fuzzy measure proposed by Joshi and Satish [18] shown below:

Hβ
α(M) =

α× β

k(α− β)

[ k
∑

i=1

{(

µM (qi)
β+

(

1−µM(qi)
)β
)

1

β −
(

µM (qi)
α+

(

1−µM(qi)
)α

)
1

α
}

]

.

Example 1. Consider a FS M1 of X = {3, 4, 5, 6, 7}. The FS is defined as:

M1 = {(3, 0.1), (4, 0.3), (5, 0.4), (6, 0.9), (7, 1)}.

Then the modifier for the fuzzy set

M =
{

q,
(

µM (q)
)

| q ∈ X
}

in X is given by

Mk =
{

q,
(

µM(q)
)k | q ∈ X

}

. (4.1)

Based on the operations, Hwang and Yang [11] and Hung and Yang [13] and in equation

(4.1), we have:

M
1

2

1 = {(3, 0.316), (4, 0.548), (5, 0.632), (6, 0.949), (7, 1)},

M2
1 = {(3, 0.01), (4, 0.09), (5, 0.16), (6, 0.81), (7, 1)},
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M3
1 = {(3, 0.001), (4, 0.027), (5, 0.064), (6, 0.729), (7, 1)},

and

M4
1 = {(3, 0), (4, 0.008), (5, 0.026), (6, 0.656), (7, 1)}.

We can regard the FS M1 as “LARGE” on X by considering the characterization of

linguistics variables. Correspondingly, to FSs M
1

2

1 , M
2
1 , M

3
1 and M4

1 may be treated as

“More or Less Large”, “Very LARGE”, “Quite Very LARGE”, “Very Very LARGE”,

respectively. The concept of Shannon’s entropy has been utilized for simple weighting

calculation method (see Wang and Lee [31], Wu et al. [32]). The larger the value of the

information entropy, the smaller the information entropy weight (see Li et al. [22]), then

the smaller the different alternatives in this specific attribute and the less information

the specific attribute provides and the less important this attribute becomes in decision

making process (see Wang and Lee [31]). Intuitively, from M
1

2

1 to M4
1 , the losss of

information hidden in them become less. The entropy conveyed by them incresing. So

the following realtion holds (see Hwang and Yang [11], Hung and Yang [13], Joshi and

Kumar [18]).

H(M
1

2

1 ) > H(M) > H(M2
1 ) > H(M3

1 ) > H(M4
1 ). (4.2)

To make a comparison, entropy measures HY1
(M1), HK(M1), HPal(M1), HLL(M1),

HHY(M1), H
β
α(M1), H

new
α(=2)(M1) are employed to faciliate analysis. In Table 1, we have

presented the results obtained based on different measures to faciliate comparative anal-

ysis.

Table 1: Fuzziness values with different information measures.

❍
❍
❍
❍
❍

FSs
HY1

(M1) HK(M1) HPal(M1) HLL(M1) HHY(M1) Hβ
α(M1) Hnew

α(=2)(M1)

M
1

2

1 0.397 0.220 1.389 0.810 0.505 0.4672 0.3857

M1 0.360 0.311 1.331 0.723 0.397 0.4672 0.3442

M2
1 0.167 0.099 1.202 0.378 0.212 0.2834 0.2349

M3
1 0.145 0.078 1.151 0.870 0.167 0.2202 0.1795

M4
1 0.151 0.082 1.136 0.692 0.165 0.1906 0.1531

We can note that FS M will be assigned more entropy than the FS M
1

2

1 when entropy

measures HY1
(M1), HK(M1) and HLL(M1) are applied. The ranking orders obtained

based on these measures are listed below.

HY1
(M

1

2

1 ) > HY1
(M1) > HY1

(M2
1 ) > HY1

(M4
1 ) > HY1

(M3
1 ),

HK(M1) > HK(M
1

2

1 ) > HK(M2
1 ) > HK(M4

1 ) > HK(M3
1 ),



FUZZY ENTROPY MEASURE WITH AN APPLICATIONS IN DECISION MAKING 111

HLL(M
3
1 ) > HLL(M

1

2

1 ) > HLL(M1) > HLL(M
4
1 ) > HLL(M

2
1 ).

It is shown that these ranked orders do not satisfy intuitve analysis in equation (4.2),

while other entropy measures can induce desirable results. In this example HPal(M1),

HHY(M1), H
β
α(M1) and Hnew

α(=2)(M1) perform well. This illustrates that these entropy

measures are not robust enough to distinguish the uncertainty of FSs with linguistic

information.

Example 2. Take another FS M2 defines in X. The FS is defined as :

M2 = {(3, 0.2), (4, 0.3), (5, 0.4), (6, 0.7), (7, 0.8)}.

We calculate M
1

2

2 , M
2
2 , M

3
2 andM4

2 . Now we compare onlyHPal(M2), HHY(M2), H
β
α(M2)

and Hnew
α(=2)(M2).

Table 2: Fuzziness values with HPal(M2), HHY(M2), H
β
α(M2) and Hnew

α (M2). .

Fuzzy sets HPal(M2) HHY(M2) H
β=10
α=0.3(M2) Hnew

α(=2)(M2)

M
1

2

2 1.501 0.653 1.1919 0.5092

M2 1.513 0.616 1.2073 0.4981

M2
2 1.386 0.490 1.0206 0.4046

M3
2 1.094 0.393 0.8418 0.3207

M4
2 1.241 0.298 0.7006 0.2613

Moreover, the results produced by entropy measures HPal(M2), H
β
α(M2) are also not

reasonable, which are shown as the equations below.

HPal(M2) > HPal(M
1

2

2 ) > HPal(M
2
2 ) > HPal(M

4
2 ) > HPal(M

3
2 ),

Hβ
α(M2) < Hβ

α(M
1

2

2 ) > Hβ
α(M

2
2 ) > Hβ

α(M
3
2 ) > Hβ

α(M
4
2 ),

Therefore, the entropy measures HPal(M2), H
β
α(M2) are not suitable for differetiating the

information conveyed by FSs. But HHY(M2) and Hnew
α (M2) are also satisfy the ranking

order in equation (4.2). The effectiveness of proposed fuzzy measure Hnew
α(=2)(M2) and

HHY(M2) is indicated by this example once again. Hence, the proposed measure consider

one parameter which increase the flexibility due to the paramter α whereas HHY does not

due to the absense of parameters. Therefore, the proposed measure is encouraging. So

the presence of parameter in an information measure makes it flexible from application

point of view.
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4.1. Sensitive analysis

In this section, a sensitivity analysis has been done to demonstrate the proposed

information behaviour. Inclusion of a parameter α effets the reliability or fuzzy in-

formation. It provides more malleability to the proposed measure for practical pur-

poses. The one parametric models are more flexible and suitable to use in certain

situations. To see the impact of the parameter α in the proposed entropy, different

parametric values were implemented, then the same grading results were achieved. Out-

comes with various values of parameter α are depicted in Table 3. The ranking is as

Hnew
α (M

1

2

1 ) > Hnew
α (M1) > Hnew

α (M2
1 ) > Hnew

α (M3
1 ) > Hnew

α (M4
1 ) for any value of α

It implies that the change of α has no effect on the ranking sequence and hence our

proposed approach considers all linguistic information. Figure 1 portray the sensitivity

outcomes for the diverse values of α.

Table 3: Fuzziness values with proposed information measures at different values.

Fuzzy sets Hnew
α(=3)(M1) Hnew

α(=4)(M1) Hnew
α(=5)(M1) Hnew

α(=6)(M1) Hnew
α(=8)(M1) Hnew

α(=10)(M1)

M
1

2

1 0.3233 0.2732 0.2348 0.2051 0.1631 0.1351

M1 0.2915 0.2500 0.2181 0.1931 0.1571 0.1323

M2
1 0.2072 0.1845 0.1662 0.1510 0.1276 0.1103

M3
1 0.1628 0.1472 0.1338 0.1223 0.1042 0.0906

M4
1 0.1373 0.1221 0.1091 0.0983 0.0817 0.0699

Figure 1: Senstivity analysis of the proposed measure under FSs.
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In the next section, we will give the application of the proposed fuzzy measure under

bipolar fuzzy theory to find the objective weight. Also, we presented the bipolar fuzzy

TOPSIS multi-criteria decision-making model based on entropy weights for the selection

of car options with minimum cost and maximum benefits of the intended car. For other

terminologies and applications that are not mentioned in this paper, readers may refer

to Zhang [37].

5. Bipolar Fuzzy Technique for order preference by similarity to ideal solu-

tions (BF-TOPSIS)

An extension of fuzzy set, called bipolar fuzzy set, was introduced by Zhang [37]. A

bipolar fuzzy set is a pair (µ+
M (q), µ−

M (q)), where µ+
M (q) : X → [0, 1] and µ−

M (q) : X →
[−1, 0] are any mappings. BFSs are an extension of fuzzy sets whose membership degree

range is [−1, 1]. In a bipolar fuzzy set, if the membership degree is of an element then we

say that the element is irrelevant to the corresponding property, the membership degree

(−1, 0] of an element implies that the element somewhat satisfies the counter-property

and the membership degree (0, 1] of an element indicates that the element somewhat

satisfies the property. The idea which lies behind such description is connected with the

existence of “bipolar information” (e.g., positive information and negative information)

about the given set. Positive information represents what is granted to be possible, while

negative information represents what is considered to be impossible.

The MCDM problem to be considered can be described such as all alternatives

consists of a set denoted by X = {q1.q2, . . . , qk}. The set of all considered criteria

expressed as O = {o1, o2, . . . , or}. The weight vector of criterias is w = (w1, w2, . . . , wk)
T

with
∑k

i=1wi = 1. Due to limitations of the decision maker knowledge and expertise,

a bipolar fuzzy form expresses the evaluation information provided each criteria. The

bipolar fuzzy decision matrix given by the decision maker is expressed as :

F =















O1 O2 · · · Or

q1 (µ+
11, µ

−
11) (µ+

12, µ
−
12) · · · (µ+

1r, µ
−
1r)

q2 (µ+
21, µ

−
21) (µ+

22, µ
−
22) · · · (µ+

2r, µ
−
2r)

...
...

...
. . .

...

qk (µ+
k1, µ

−
k1) (µ+

k2, µ
−
k2) · · · (µ+

kr, µ
−
kr)















w = (w1, w2, . . . , wk)
T such that 0 ≤ wj ≤ 1 (j = 1, 2, . . . , k) satisfying

∑k
j=1wj = 1.

The bipolar fuzzy matrix is calculated as follows : F = |ξij |k×r where ξij = (ξ+ij , ξ
−
ij ) =

(µ+
qi
(oj), µ

−
qi
(oj)).

If the attribute weights are completely known, then MCDM problem can be solved

by aggregating all bipolar fuzzy information under different attributes and comparing

the final bipolar fuzzy values. However in a partial application, the attribute weights

are usually partially known or completely unknown. Therefore, the attribute weights

must be determined before solving the MCDM problems. The attribute weights can be
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empirically assigned by decision makers. However, this method is subjective and the

partial information on the attribute weights may not be used sufficiently. Therefore,
we can propose a new model to determine the attribute weights based on the proposed

measure. Generally, we hope the evaluation results of all alternatives under on each
attribute are distinguished enough to faciliate our decision making. Therefore, we can

set the total information amount as the objective function of optimization. By minimizing
the sum of all information amount under all attributes, we can construct the following

models.

Min T =
r

∑

j=1

wj

k
∑

i=1

Hnew
α (µij) (5.1)

s.t. w ∈ H,

r
∑

j=1

wj = 1, wj ≥ 0, j = 1, 2, . . . , r,

where H is the set of all incomplete information about attribute weights and Hnew
α (µij)

is the information measure calculated by our proposed measure.

When the attribute weights are completely unknown, then we determine the criteria
(information entropy) oj, 1 ≤ j ≤ r, using Formula (5.2).

Ek(oj) =
1

k(α−α−1)

[ k
∑

i=1

{(

|ξ−ij |α
−1

+ (1 − ξ+ij)
α−1

)

−
(

|ξ−ij |α + (1− ξ+ij)
α
)}

]

, (5.2)

1 ≤ j ≤ r and α > 0(6= 1).

According to entropy theory, smaller value of entropy across alternatives provides

decision makers a useful information. Therefore, criterion should be assigned a bigger
weight, otherwise such a criterion will not be given due importance by most of the

decision makers. In other words, such a criterion should be evaluated as a very small
weight.

In summary, the computational procedure of the decision making method initially
introduced by Chen [6] and Hwang and Yoon [10] is listed in the following steps:

1. Calculate the degree of divergence divj of each criterion oj using equation (5.3).

divj = 1− Ek(oj), 1 ≤ j ≤ r. (5.3)

2. Calculate the entropy weights wj for each criterion oj as given in (5.4).

wj = divj ÷
r

∑

j=1

divj , 1 ≤ j ≤ r. (5.4)

3. Construct the weighted bipolar fuzzy decision matrix M̃ = [zij ]k×r where, for each

1 ≤ i ≤ k, zij is defined in equation below.

zij = (z+ij , z
−
ij ) = wj(µ

+
ij , µ

−
ij), 1 ≤ j ≤ r.
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4. Calculate the Best Solution (q+) and Worst solution (q−) using formula (5.5) and
(5.6), respectively.

q+νe = [(α+
1 , α

−
1 ) (α

+
2 , α

−
2 ) · · · (α+

r , α
−
r )]

T , (5.5)

q−νe = [(β+
1 , β

−
1 ) (β

+
2 , β

−
2 ) · · · (β+

r , β
−
r )]

T , (5.6)

where α+
j = inf z+ij , α

−
j = sup z−ij , β

+
j = sup z+ij , β

−
j = inf z−ij , 1 ≤ j ≤ r.

5. The distance measures of each alternatives qi from q+ and q− using formula (5.7)
and (5.8), respectively.

d(qi, q
+) =

√

√

√

√

r
∑

j=1

[

(µ+
ij − α+

j )
2 + (µ−

ij − α−
j )

2
]

, (5.7)

d(qi, q
−) =

√

√

√

√

r
∑

j=1

[

(µ+
ij − β+

j )
2 + (µ−

ij − β−
j )

2
]

. (5.8)

6. Calculate the relative closeness degree of each alternative qi using equation (5.9).

C(qi) =
d(qi, q

−νe)

d(qi, q+νe) + d(qi, q−νe)
, 1 ≤ i ≤ k. (5.9)

7. Ranking all the alternatives in desending order according to the relative degree of
closeness. The alternative away from the q− and nearest to q+ will be the best
alternative.

Example 3. Assume that we have person X who is confused in choosing a car among
five types of cars avaliable in the market. Suppose that he is concentrate on the following
features in order to own his car. Price, Color, Elegancy and Safety of a car. Since it
is known that every feature effects the cost and benefit of the intended car. So, these
cars express the alternatives and the mentioned features represent the criteria in our
MCDM problem. Let us denote the concerned cars and criteria by {q1, q2, q3, q4, q5} and
{o1, o2, o3, o4} respectively. Ratings of the alternative, in Table 4 and weights of the
criteria are given by a person X in matrices format with bipolar fuzzy and fuzzy values,
respectively.

Table 4: Rating of the Alternatives.

Alternatives Price Color Elegancy Safety

q1 (0.4,-0.6) (0.5,-0.6) (0.8,-0.6) (0.7,-0.7)

q2 (0.3,-0.7) (0.5,-0.6) (0.6,-0.7) (0.8,-0.6)

q3 (0.2,-0.8) (0.1,-0.8) (0.9,-0.4) (0.4,-0.7)

q4 (0.4,-0.6) (0.8,-0.1) (0.8,-0.3) (0.5,-0.6)

q5 (0.9,-0.3) (0.5,-0.7) (0.4,-0.9) (0.4,-0.9)



116 VIKAS ARYA AND SATISH KUMAR

Case 1. Let the partial information avaliable about attributes weight is listed in the

following set .

H = {0.10 ≤ w1 ≤ 0.13, 0.13 ≤ w2 ≤ 0.19, 0.24 ≤ w3 ≤ 0.30, 0.40 ≤ w4 ≤ 0.60}.

The overall entropy of each attribute can be calculated by the equations below.

K1 =

5
∑

i=1

ξ1i =

5
∑

i=1

Hnew
α (r1i) = 0.102; K2 =

5
∑

i=1

ξ2i =

5
∑

i=1

Hnew
α (r2i) = 0.055;

K3 =
5

∑

i=1

ξ3i =
5

∑

i=1

Hnew
α (r3i) = 0.013; K4 =

5
∑

i=1

ξ4i =
5

∑

i=1

Hnew
α (r4i) = 0.013.

The optimal model to determine the attribute weights can be constructed as;

Min T =0.102w1 + 0.055w2 + 0.013w3 + 0.013w4

such that w ∈ H,

4
∑

j=1

wj = 1, wj ≥ 0, j = 1, 2, 3, 4.

Then the weighting vector of the attribute can be obtained as:

w = (0.13, 0.19, 0.25, 0.43)T

Table 5: Entropy Weights.

Calculated Values Price o1 Color o2 Elegancy o3 Safety o4

En(oj) 0.102 0.055 0.013 0.013

wj 0.13 0.19 0.25 0.43

The weighted fuzzy decision matrix is given in Table 6.

Table 6: Weighted Fuzzy Decision Matrix.

Criteria
Alternatives

Price Color Elegancy Safety

o1 (0.052,-0.078) (0.095,-0.114) (0.2,-0.15) (0.301,-0.301)

o2 (0.039,-0.091) (0.095,-0.114) (0.15,-0.175) (0.344,-0.258)

o3 (0.026,-0.104) (0.019,-0.152) (0.225,-0.10) (0.172,-0.301)

o4 (0.052,-0.078) (0.152,-0.019) (0.2,-0.075) (0.215,-0.258)

o5 (0.117,-0.039) (0.095,-0.133) (0.1,-0.225) (0.172,-0.387)
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The Best and Worst solutions are given in Table 7.

Table 7: Best and Worst Solutions.

α+
j 0.026 0.019 0.1 0.172

α−

j -0.039 -0.019 -0.075 -0.258

β+
j 0.117 0.152 0.225 0.344

β−

j -0.104 -0.152 -0.225 -0.387

The distance measures and ralative closeness degree of each alternative measure are given
in Table 8.

Table 8: Distance Measures and Relative Closeness Degree.

Calculated values q1 q2 q3 q4 q5

d(qi, q
+) 1.5044 1.4943 1.4296 1.4170 1.6619

d(qi, q
−) 1.1593 1.1533 1.1847 1.1404 1.3511

c(qi) 0.4352 0.4356 0.4532 0.4459 0.4484

Ranking the alternatives in descending order, we get the following sequence : C(q3) ≻
C(q5) ≻ C(q4) ≻ C(q2) ≻ C(q1) and C(q3) is the best available option. Therefore, third
car is the most advantageous among the set of cars under study.

Case 2. When there is no infromation for the attribute weights, then the weights can be
obtained from equations (5.2), (5.3) and (5.4) and listed in the following Table 9 and 10
.

Table 9: Entropy Weights.

Calculated Values Price o1 Color o2 Elegancy o3 Safety o4

En(oj) 0.102 0.055 0.013 0.013

divj 0.898 0.945 0.987 0.987

wj 0.235 0.248 0.259 0.259

Table 10: Weighted Fuzzy Decision Matrix.

Criteria
Alternatives

Price Color Elegancy Safety

q1 (0.094,-0.141) (0.124,-0.149) (0.207,-0.155) (0.181,-0.181)

q2 (0.071,-0.165) (0.124,-0.149) (0.155,-0.181) (0.207,-0.155)

q3 (0.047,-0.188) (0.025,-0.198) (0.233,-0.104) (0.104,-0.181)

q4 (0.094,-0.141) (0.198,-0.248) (0.207,-0.078) (0.130,-0.155)

q5 (0.212,-0.071) (0.124,-0.174) (0.104,-0.233) (0.104,-0.233)
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The Best and Worst solutions are given in Table 11.

Table 11: Best and Worst Solutions.

α+
j 0.047 0.025 0.104 0.104

α−

j -0.071 -0.025 -0.078 -0.015

β+
j 0.212 0.198 0.233 0.207

β−

j -0.188 -0.198 -0.233 -0.233

The distance measures and relative closeness degree of each alternative measure are given

in Table 12.

Table 12: Distance Measures and Relative Closeness Degree.

Calculated values q1 q2 q3 q4 q5

d(qi, q
+) 1.5400 1.5275 1.4311 1.4324 1.6936

d(qi, q
−) 1.1723 1.1666 1.1331 1.1219 1.3355

c(qi) 0.4322 0.4330 0.4419 0.4392 0.4409

All alternatives can be ranked into the following order: C(q3) ≻ C(q5) ≻ C(q4) ≻
C(q2) ≻ C(q1), according to relative closeness degree, we conclude that third car is the

most advantageous among the set of cars under study.

For comparative analysis, we can also solve this multi criteria decision making

(MCDM) problem by applying Alghandi et al. [3] method. The ranked order of five

alternatives is C(q3) ≻ C(q5) ≻ C(q4) ≻ C(q2) ≻ C(q1). We can see that both of our

proposed method based on (5.2) and the method proposed by Alghandi et al. [3], we

can take C(q3) as the best choice for choosing a car. Even though the all order are

different. This difference has no effect on choosing the best alternative for cars. Actu-

ally, the solution of an MCDM problem only concerns the best alternative. The order

of other alternatives is beyond the ultimate goal of an MCDM problem. This example

demonstartes that the proposed methods for solving MCDM problems are competent

to getting reasonable results. Compared with Alghandi et al. [3] method, our proposed

optimal model is easier, which will reduce the computation burden. The fuzzy decision

making method with the entropy weights is more effective and practical for dealing with

the partially known and unknown information about criteria weights. Thus, the priority

of the new information measure is also verified.

5.1. Managerial implications

Multi-criteria decision-making is a procedure to make an ideal decision that has the

highest level of achievement from a set of alternatives that are portrayed with respect to

different conflicting criteria. TOPSIS method is the most favorable and effective method



FUZZY ENTROPY MEASURE WITH AN APPLICATIONS IN DECISION MAKING 119

to resolve MCDM problems. To deal with uncertainty and incomplete information, fuzzi-

ness, intuitionistic fuzziness and neutrosophic sets have been used successfully in TOPSIS

methods for solving MCDM problems. However, in many cases, the given information is

bipolar in nature. Recently, a bipolar fuzzy TOPSIS method for the reasonable selection

of objects was discussed by Alghandi et al. [3]. But, in this method, the weights are

chosen arbitrarily, which can be changed according to the choice of decision-makers. The

chosen weights may be irrelevant for the given information, which can effect the results

of decision-making. Therefore, it is important to calculate weights (completely known

and unknown) as indicated by the given information. In our method, we have talked

about the procedure for calculating entropy weights from given bipolar fuzzy informa-

tion. It gives more reasonable decisions as compared to the previous methods discussed

in the literature. Therefore, current study have focused on evaluating car services to

guide for the consumers to select the best car services. The ranking results obtained

is more reliable and accurate since it avoids the situation of having the same similarity

index to both positive and negative ideal solutions. Thus, this evaluation model can

be applied in other scenarios which have same characteristics as compared to those of

car service industry and it can be used widely in the area of bargaining process which

is usually uncertain and complex. There are many categories of cars including SUVs,

Sedans, Crossovers, MPVs etc. Due to this diversity, it is difficult for consumers to opt

a particular car. Therefore, our study also provides theoretical and practical guidance

for the consumers that are intending to choose the best offer.

6. Conclusions

In this paper, we have successfully introduced a new information measure involving

one parameter based on Havrda-Charvat-Tsallis entropy and their necessary properties

are verified. The proposed information measure has been compared with existing en-

tropies. Some numerical examples based on linguistic terms have been offered to show

the effectiveness and applicability of the proposed information measure. Further, we

developed a new framework for tackling bipolar fuzzy information by combining the

notion of bipolar fuzzy sets and TOPSIS method. It ranks all alternatives in decreas-

ing order. The best alternative is clearly identified. The proposed method based on

evaluating the distances of each alternative to bipolar fuzzy Best and Worst solutions.

Also, we have displayed the methodology of the bipolar fuzzy TOPSIS method based

on entropy weights. For illustration, we have applied this method to a real-life prob-

lems. The proposed entropy and MCDM method can further be applied to the concept

of the parametric directed divergence measure, similarity and dissimilarity measures for

fuzzy sets, intuitionistic fuzzy sets, pythagorean fuzzy sets, coding theory, interval valued

intuitionistic fuzzy sets, picture fuzzy sets etc.
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