Probability Density Estimation by Ultraspherical Series

Tamkang University

R.O.C.

Guey-Mei Tseng

Tamking University

R.O.C.

Abstract

Let X_1, X_2, \dots, X_n be a sequence of independent by identically distributed random variables with an unknown density function $f(x) = \sum_{k=0}^{l(n)} \hat{a}_{kn} \psi_k(x)$ $\hat{a}_{kn} = \frac{1}{n} \sum_{j=0}^n \psi_k(X_j) \cdot w(X_j)$ where is the kth where is the kth $w(x) = (1-x^2)^{(\lambda-\frac{1}{2})}$ normalized Ultraspherical function with weight function $\lambda > -\frac{1}{2}$ and is an integer depending on sample size n. Under some conditions of f(x) we show consistency of in the sense of mean integrated square error and mean square error. The rate of convergence is also investigated.

Keywords: Probability Density Estimation, Ultraspherical Function, Mean Integrated Square Error, Mean Square Error, Rate of Convergence.